Kolinski, R. A. \& Riddel, F. G. (1981). Tetrahedron Lett. 22, 22172220.

Möller, R., von Philipsborn, W., Schleifer, L., Aped, P. \& Fuchs, B. (1991). Tetrahedron, 47, 1013-1036.

Okawara, T., Takaishi, H., Okamota, Y., Yamasaki, T. \& Furukawa, M. (1995). Heterocycles, 41, 1023-1033.

Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Corrections. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SAINT Software Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tan, G. O., Hodgson, K. O., Hedman, B., Clark, G. R., Garrity, M. L. \& Sorrell, T. N. (1990). Acta Cryst. C46, 1773-1775.
Weisman, G. R., Ho, S. C. H. \& Johnson, V. (1980). Tetrahedron Lett. 21, 335-338.

Acta Cryst. (1999). C55, 1404-1406

The square-pyramidal $\mathbf{P d}^{11}$ complex of a cross-bridged tetraazamacrocycle

Timothy J. Hubin, ${ }^{a}$ Nathaniel W. Alcock ${ }^{b}$ and Daryle H. Busch ${ }^{a}$
${ }^{a}$ Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA, and ${ }^{b}$ Department of Chemistry, University of Warwick, Coventry CV4 7AL, England. E-mail: msrbb@csv.warwick.ac.uk

(Received 5 March 1999; accepted 7 June 1999)

Abstract

The preparation and crystal structure of chloro(4,11-di-methyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane- $\left.\kappa^{4} N\right)$ palladium(II) chloride dihydrate, $\left[\mathrm{PdCl}\left(\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{4}\right)\right] \mathrm{Cl}$-$2 \mathrm{H}_{2} \mathrm{O}$, are described. The $\mathrm{Pd}^{\mathrm{II}}$ ion is coordinated to all four N atoms of the folded macrobicycle and to a single chloride ligand in a square-pyramidal geometry. The bond to the axial N atom is considerably longer than the others $\left[\mathrm{Pd}-\mathrm{N}_{\mathrm{ax}} 2.461\right.$ (3) and average $\mathrm{Pd}-\mathrm{N}_{\mathrm{eq}}$ $2.097(10) \AA]$. The $\mathrm{Pd}-\mathrm{Cl}$ distance is $2.3407(10) \AA$.

Comment

The coordination geometries of complexes of Pd^{11}, as of other transition metals, result from a delicate interplay between ligand-field favorability for the metal ion and the steric and topological constraints of the ligand(s) (Huheey et al., 1993; Busch, 1993). As a d^{8} ion, $\mathrm{Pd}^{\mathrm{II}}$ is overwhelmingly found in four-coordinate square-
planar complexes, to maximize occupation of bonding orbitals (Cotton \& Wilkinson, 1988). Geometries other than square planar for Pd^{11} are observed only when the steric or topological demands of the ligand outweigh the loss in stabilization due to the geometric distortion. The title compound, (1), exhibits such a distorted geometry, in this case a five-coordinate square-pyramidal one, because the short ethylene cross-bridge of the macrocyclic ligand 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane, (2), does not allow the macrocycle to occupy the four sites of a square plane. The topological constraint of the two-carbon bridge enforces a fold in the ligand that is conserved on binding to Pd^{11}.

The only non-adjacent nitrogen pair capable of spanning the diagonal of the base of the square pyramid, N 4 and N 11 , do so with an $\mathrm{N} 4-\mathrm{Pd}-\mathrm{N} 11$ angle of $171.65(11)^{\circ}$. The single chloride ligand completes the coordination sphere of $\mathrm{Pd}^{\mathrm{II}}$ and allows the complex to retain part of the advantage of a square-based geometry.

The chemically equivalent N atoms, N 1 and N 8 , occupy inequivalent sites on the square pyramid; N 1 is on the base, while N8 is at the apex. This inequality is evident in the $\mathrm{Pd}-\mathrm{N}$ distances; $\mathrm{Pd}-\mathrm{N} 1$ is 2.112 (3), while $\mathrm{Pd}-\mathrm{N} 8$ is 2.461 (3) \AA. The long $\mathrm{Pd}-\mathrm{N} 8$ bond demonstrates that ligand topology dictates the coordination geometry in this complex rather than it being determined by the electronic configuration of the $\mathrm{Pd}^{1 \mathrm{l}}$ ion, as in less topologically constrained ligand complexes. The result of the mismatch between ligand constraints

Fig. 1. View of the title molecule showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.
and metal-ion ligand-field effects is a rather unsymmetrical complex where only a chloride and an 'empty' site (of an octahedron) occupy one hemisphere of the palladium ion, while the entire bicyclic ligand is in the other hemisphere.

Experimental

$\operatorname{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2} \quad(0.259 \mathrm{~g}, \quad 0.001 \mathrm{~mol})$ and 4,11 -dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane ($0.254 \mathrm{~g}, 0.001 \mathrm{~mol}$), obtained by literature methods (Weisman et al., 1990), were stirred together in $\mathrm{MeCN}(20 \mathrm{ml}$) under nitrogen for 12 h . Removal of a black solid by filtration gave a green solution into which ether was allowed to diffuse. Dark blue X-ray quality crystals of (1) resulted in 55% yield.

Crystal data

$\left[\mathrm{PdCl}\left(\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{4}\right)\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=467.75$
Monoclinic
C2/c
$a=29.7207(13) \AA$
$b=7.7934$ (3) \AA
$c=17.2154(7) \AA$
$\beta=102.3920(10)^{\circ}$
$V=3894.6(3) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 5706 reflections
$\theta=3-20^{\circ}$
$\mu=1.248 \mathrm{~mm}^{-1}$
$T=188$ (2) K
Block
$0.40 \times 0.20 \times 0.15 \mathrm{~mm}$
Dark blue
$D_{x}=1.593 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART diffractometer with Cryostream cooler (Cosier \& Glazer, 1986)
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.67, T_{\text {max }}=0.81$

O3	0	$0.9380(4)$	$1 / 4$	$0.0363(9)$
O4	0	$0.4105(5)$	$1 / 4$	$0.0530(12)$
O5	$0.04677(10)$	$0.6742(4)$	$0.34822(16)$	$0.0507(8)$
N1	$0.08064(10)$	$0.6920(4)$	$0.06635(17)$	$0.0253(7)$
C2	$0.07598(14)$	$0.7027(5)$	$0.1516(2)$	$0.0344(9)$
C3	$0.11567(13)$	$0.6118(5)$	$0.2039(2)$	$0.0326(9)$
N4	$0.15940(11)$	$0.6903(4)$	$0.19263(17)$	$0.0265(7)$
C5	$0.19811(14)$	$0.5646(5)$	$0.2152(2)$	$0.0371(10)$
C6	$0.19290(14)$	$0.3896(5)$	$0.1748(2)$	$0.0361(10)$
C7	$0.19395(14)$	$0.3808(5)$	$0.0871(2)$	$0.0364(10)$
N8	$0.15439(10)$	$0.4652(4)$	$0.03486(17)$	$0.0258(7)$
C9	$0.16265(15)$	$0.4978(5)$	$-0.0449(2)$	$0.0376(10)$
C10	$0.13058(15)$	$0.6347(5)$	$-0.0890(2)$	$0.0361(10)$
N11	$0.13749(11)$	$0.8070(4)$	$-0.04880(17)$	$0.0288(7)$
C12	$0.09649(15)$	$0.9184(5)$	$-0.0771(2)$	$0.0417(11)$
C13	$0.05087(16)$	$0.8498(6)$	$-0.0637(2)$	$0.0468(12)$
C14	$0.04746(15)$	$0.8209(5)$	$0.0222(2)$	$0.0406(10)$
C15	$0.06985(13)$	$0.5147(4)$	$0.0338(2)$	$0.0316(9)$
C16	$0.10970(13)$	$0.3886(4)$	$0.0361(2)$	$0.0296(9)$
C17	$0.17008(15)$	$0.8418(5)$	$0.2463(2)$	$0.0373(10)$
C18	$0.17671(16)$	$0.8951(5)$	$-0.0750(3)$	$0.0486(12)$

Table 2. Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Pd1}$-N4	2.078 (3)	Pdi--Cl1	2.3407 (10)
$\mathrm{PdI}-\mathrm{NlI}$	2.101 (3)	Pdi-N8	2.461 (3)
PdI - N 1	2.112 (3)		
N4-Pdl-N11	171.65 (11)	$\mathrm{N} 1-\mathrm{Pd1}-\mathrm{Cll}$	169.68 (8)
$\mathrm{N} 4-\mathrm{Pdl}-\mathrm{N} 1$	85.07 (11)	N4-Pdl-N8	89.61 (10)
N11-Pdl- N 1	91.00 (12)	$\mathrm{N} 11-\mathrm{Pdl}$ - N 8	82.45 (10)
$\mathrm{N} 4-\mathrm{Pdl}-\mathrm{Cll}$	89.87 (9)	$\mathrm{N} 1-\mathrm{Pd} 1-\mathrm{N} 8$	80.12 (10)
$\mathrm{NHI}-\mathrm{PdI}-\mathrm{Cll}$	95.12 (9)	$\mathrm{Cll}-\mathrm{Pd1}-\mathrm{N} 8$	108.89 (7)

Three lattice water molecules were located, two on special positions; their H atoms were not included. They presumably derive from incompletely dried solvents. Other H atoms were added at calculated positions and refined using a riding model (including free rotation about $\mathrm{C}-\mathrm{C}$ bonds for methyl groups). H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl- H atoms) times $U_{\text {eq }}$ of the carrier atom.

Data collection: SMART (Siemens, 1995). Cell refinement: SAINT (Siemens, 1995). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

We thank Procter \& Gamble for their generous support of this research. TJH thanks the Madison A. and Lila Self Graduate Fellowship of the University of Kansas for financial support. EPSRC and Siemens plc generously supported the purchase of the SMART diffractometer. The Warwick-Kansas collaboration has been supported by NATO.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1310). Services for accessing these data are described at the back of the journal.

References

Busch, D. H. (1993). Chem. Rev. 93, 847-860.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Coton, F. A. \& Wilkinson, G. (1988). Advanced Inorganic Chemistry, 5th ed. New York: Wiley.
Huheey, J. E., Keiter, E. A. \& Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. New York: HarperCollins.

Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Area Detector Control and Integration Sofiware. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Weisman, G. R., Rogers, M. E., Wong, E. H., Jasinski, J. P. \& Paight, E. S. (1990). J. Am. Chem. Soc. 112, 8604-8605.

Acta Cryst. (1999). C55, 1406-1408

cis-Bis(cyanomethyl)bis(triphenyl-phosphine)platinum(II)-dichloromethane (1/0.6)

William Henderson and Allen G. Oliver
Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand. E-mail: w.henderson@waikato.ac.nz

(Received 27 January 1999; accepted 3 June 1999)

Abstract

The cyanomethyl ligands of the title complex, cis$\left[\mathrm{Pt}^{\left.\left(\mathrm{CH}_{2} \mathrm{CN}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot 0.6 \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, adopt a syn geometry. }}\right.$ The $\mathrm{Pt}-\mathrm{C}$ bond lengths have an average value of 2.121 (17) \AA, and the $\mathrm{C}-\mathrm{Pt}-\mathrm{C}$ bond angle is $85.3(3)^{\circ}$.

Comment

Silver(I) oxide promotes the synthesis of a wide range of novel metallacycles (Henderson et al., 1994; Dinger \& Henderson, 1998). While attempting to synthesize metallalactone complexes using cyanoacetic acid and cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, we observed instead a novel decarboxylation reaction giving the title compound, (I).

(I)

The structure of only one other bis(cyanomethyl) complex, $\left[\operatorname{Ir}\left(\mathrm{CH}_{2} \mathrm{CN}\right)_{2}(\mathrm{CO})_{2}\right]\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]$, has been reported (Porta et al., 1990). Reactions of platinum(II) hydroxo complexes with $\mathrm{CH}_{3} \mathrm{CN}$, some in the presence of silver(I) oxide, gave cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{CN}\right)(X) L_{2}\right]$ complexes [$X=$ cyclohexene, OH, Cl or CH_{3}, and $L_{2}=$ $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (dppe); Arnold \& Bennett, 1980;

Cairns et al., 1977]. The facile synthesis of the complex $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{CN}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ from $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\mathrm{LiCH}_{2} \mathrm{CN}$ provides access to a range of aggregation and degradation products, including a ligand-free $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{CN}_{2}\right]\right.$ complex (Pracejus et al., 1976). One anomalous result was observed in a study into the formation of platinum dicarboxylate complexes. The reaction of $\left[\mathrm{Pt}_{(}\left(\mathrm{CO}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with $\mathrm{PhC} \equiv \mathrm{CCO}_{2} \mathrm{H}$ was found to produce the bis(phenylalkynyl) complex cis$\left[\mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ by loss of CO_{2} from both the carbonate and carboxylate groups (Burrows et al., 1997).
The platinum centre of (I) shows the expected fourcoordinate square-planar environment, with the phosphine ligands in a cis arrangement. The $\mathrm{Pl}-\mathrm{Pt}-$ P2 bond angle is slightly more obtuse [$98.09(6)^{\circ}$] than perfect square-planar coordination, while the C 2 -$\mathrm{Pt}-\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{Pt}-\mathrm{P} 2$ bond angles have closed up [85.3 (3) and $85.6(2)^{\circ}$, respectively]. The remaining bond angle ($\mathrm{C} 2-\mathrm{Pt}-\mathrm{Pl}$) is near ideal at $90.9(2)^{\circ}$. Steric considerations clearly give rise to these distortions from regular geometry. The $\mathrm{Pt}-\mathrm{C}$ bond lengths [2.104 (7) and 2.138 (7) A for $\mathrm{Pt}-\mathrm{C} 2$ and $\mathrm{Pt}-$ C 4 , respectively] are comparable with, if fractionally longer than, those in the related $\left[\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2} L_{2}\right]$ complexes $\left[L_{2}=\operatorname{bis}(\right.$ diphenylphosphino) methane (dppm) or ($2 S, 4 S$) $-\mathrm{Ph}_{2} \mathrm{CHMeCH}_{2} \mathrm{CHMePPh}_{2}$ (S, S-skewphos)] [2.069 (8)-2.109 (10) \AA; Alcock et al., 1990; Bergamini et al., 1993].
The interesting feature of complex (I) is the orientation of the cyanomethyl ligands. The ligands have

Fig. 1. The molecular structure of complex (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

